
Jens Doleschal (jens.doleschal@tu-dresden.de)

Guido Juckeland (guido.juckeland@tu-dresden.de)

Center for Information Services and High Performance Computing (ZIH)

ORNL Vampir/VampirTrace Training

Performance Analysis for Hardware Accelerators

Agenda

Motivation / Vendor Support

VampirTrace API Tracing

VampirTrace CUDA Support

An example: PiConGPU

Summary / Outlook

Guido Juckeland – Slide 2

Motivation / Vendor Support

Guido Juckeland – Slide 3

Motivation

• Single CPU performance stagnating since 2004

• Solution of the CPU vendors multiple CPU cores on one chip

• BUT: This requires parallelization of the applications to make use of all cores

• (Re-) Appearance of Hardware Accelerators to offer even more performance

Running an accelerated application:

Application
(on CPU)

Hardware
Accelerator
(e.g. GPU)

In
te

rf
ac

e
(A

P
I)

Guido Juckeland – Slide 4

Potential Performance Problems

Accelerator code is
(automatically) generated

Accelerator is running its own
program code

Performance monitoring
hardware on the accelerator

not/poorly exposed to user over
the API

Using accelerators adds another
level of complexity to (parallel)

programming

Not enough
insight into the

program execution

Guido Juckeland – Slide 5

CUDA Visual Profiler (Eigenvalues; Profiler Output)

• works without recompilation

• Counter support (not on all
processors on the GPU)

Guido Juckeland – Slide 6

CUDA Profiler

Profiling possible in every Cuda-Application without recompilation

– Control via environment variables and config file

– Output file with counters will be generated

– Different counter values collectable BUT only 4 on one run

– Multiple runs to collect all counters

Counters

– For single multiprocessor
• Cumulative count for all thread blocks on multiprocessor 0
• Examples: branch, instructions

– For a Texture Processing Cluster (TPC); Examples:
• Gld uncoalesced: Number of non-coalesced global memory loads
• Local load: Number of loacal memory loads
• Tlb miss: Number of instruction or constant memory cache misses

CUDA Visual Profiler

GUI for profiling, based on Qt

– Simplifies usage:
• No extra config files
• Multiple runs automatically
• Charts for visual analysis

– Features
• GPU Time Summary Plot: find long running kernels
• GPU Width Plot: simplified Timeline (GPU, memcpy only)
• Comparison plots (summary for two sessions)

– Advantages
• Easy to use, works on all cuda-platforms (Windows, Linux, Mac)

– Disadvantages
• No zooming
• Multiple runs
• No support for CPU-Tracing

CUDA Visual Profiler (Eigenvalues; Width Plot)

• Most important summaries

• BUT: No zooming!

• What do the host CPUs do in the
meantime?

Guido Juckeland – Slide 9

Special Solution: VampirTrace for CellBE

• Concept for Performance Tracing on Cell/B.E.

• CellTrace, prototype integration in VampirTrace

• Typical overhead: less than 5 percent

• Fine grained event recording (resolution within 100s of

nanoseconds)

Guido Juckeland – Slide 10

CellBE Traces visualize in „Standard“ Vampir/VampirServer

• Visualization of Traces with Vampir

Creates valuable insight into the runtime behavior of Cell

applications

Intuitive performance visualization and verification

• Support for large applications with hybrid Cell/B.E. and MPI parallelism

Guido Juckeland – Slide 11

•Available since VampirTrace 5.8

VampirTrace API Tracing

Guido Juckeland – Slide 12

Motivation

Application

RASCLIB

Function

Function

Function

enter

enter

leave

leave

MKL

Function

FPGA
controls

enter leave

Visualize Co-Processor usage by
looking at library calls from the
host

– No profiling code on the
Accelerator

Also usable for any kind of library

Guido Juckeland – Slide 13

14

Workflow

Header-File of a(ny) library as
source

Generated wrapper functions use
VampirTrace API

Wrapper functions can be
adapted (to include more
information)

Also works for static builds

vtlibwrapgen --gen

foo.h

vtlibwrapgen –build --shared

foowrap.c

libfoowrap.so

LD_PRELOAD=$PWD/libfoowrap.so <executable>

Guido Juckeland – Slide 14

15

Filter

Some libraries are quite large (MKL 10: 7979 function declarations)

Apply VampirTrace filters also to wrapper generation

Usable for function names and file names in/of the header file

Top down priorities

/usr/* -- 0

cblas_* -- -1

clapack_* -- -1

Guido Juckeland – Slide 15

16

Example: Bicgstab

Iterative equation solver

MKL for matrix-vector-operations on sparse matricies

Uses only one MKL header file: mkl_spblas.h

What you need to do:

vtlibwrapgen --gen –o mklwrap.c -f filter.default $MKL_INC/mkl_spblas.h

vtlibwrapgen –build –shared –o libmklwrap mklwrap.c

LD_PRELOAD=$PWD/libmklwrap.so ./bicgstab

What you get:

Thomas Ilsche

• Special Beta of VampirTrace 5.8
• Supports CUDA Versions 2.1-2.3

VampirTrace CUDA Support

Guido Juckeland – Slide 17

Beta Release (our Christmas present)

• Supports CUDA 2.1-2.3
• Runtime API hidden behind CUDA compiler (subject to

change)

Currently only CUDA Runtime API-Tracing

• Map GPUs to Threads
• Memory transfers = Thread communication

Use known metrics for parallelization

• Message statistics, summary charts
• But confusing when adding MPI and CPU threads

(overlapping metrics)

Statistics reusable

Guido Juckeland – Slide 18

Further plans

• Difficult, currently only possible by post-mortem
OTF merging

Counter support

Support multiple GPU Streams

Visualize more GPU activity

Guido Juckeland – Slide 19

An example: PiConGPU

Guido Juckeland – Slide 20

Michael Bussmann - Guido Juckeland

An Example: The Physics for Electron Acceleration

O. Jäkel, DKFZ Heidelberg

A laser-driven plasma wave

in a gas jet

accelerated electron
plasma wave

generated by the laser

The Laser Pulse drives

wave-like Modulation

of the Electron Density

Electrons surf

on this Plasma Wave

which trails the Laser Pulse

At the Speed of Light

Michael Bussmann - Guido Juckeland

Simulation vs. Experiment (Pizza-Cone-Targets)

O. Jäkel, DKFZ Heidelberg

Microscopic Image X-ray Emission

during Experiment

Simulation

of Field Distribution

…but it is hard to experimentally probe the

temporal evolution of the laser-target interaction

on a time scale of femtoseconds

We know what we are doing…

What does it looks like in Vampir?

Michael Bussmann - Guido Juckeland

Core i7 920 2.66 Ghz, 8GB RAM;
GTX 280, TESLA C1060; Gbit E-
net ;OpenMPI 1.3.3; Cuda 2.2

Summary/ Outlook

Guido Juckeland – Slide 24

What has been accomplished?

• Cell -> extremely good (Standard Vampir, Special VampirTrace)
• GPU / FPGA -> only API tracing

Currently Solutions for three platforms in varying detail

• Between 1% (GPU/FPGA) and 5% (Cell)

Very low overhead

• Interesting metrics are still the same (just a little more complex)

No need to learn new tools

• Understanding why FPGABLAST was so bad on our system
• A PiC implementation that the whole plasma physics community is

extremely excited about
• A great tool to understand Cell applications

A couple of success stories with the new possibilities

Guido Juckeland – Slide 25

A Look into the Future

Support for OpenCL

• Expand to more processes for tracing and
visualization

Scalibility of the tool in general

• Help on parallelizing their CUDA codes
• Performance studies on their hybrid codes

Requests from other groups

Guido Juckeland – Slide 26

Acknowledgements

•Cell Tracing

Daniel Hackenberg (ZIH)

•PiConGPU (Linux port and Control infrastructure)

Rene Widera (ZIH)

•API-Tracing
•RASCLIB VampirTrace support

Thomas Ilsche (ZIH)

•PiConGPU (MPI parallelisation)
•VampirTrace integration of CUDA

Wolfgang Hönig (ZIH)

•PiConGPU work (Physics and CUDA kernels)

Heiko Burau (FZD)

Michael Bussmann - Guido Juckeland

